Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104787, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149147

RESUMO

Understanding the functional properties of severe acute respiratory syndrome coronavirus 2 nonstructural proteins is essential for defining their roles in the viral life cycle, developing improved therapeutics and diagnostics, and countering future variants. Coronavirus nonstructural protein Nsp15 is a hexameric U-specific endonuclease whose functions, substrate specificity, mechanism, and dynamics are not fully defined. Previous studies report that Nsp15 requires Mn2+ ions for optimal activity; however, the effects of divalent ions on Nsp15 reaction kinetics have not been investigated in detail. Here, we analyzed the single- and multiple-turnover kinetics for model ssRNA substrates. Our data confirm that divalent ions are dispensable for catalysis and show that Mn2+ activates Nsp15 cleavage of two different ssRNA oligonucleotide substrates but not a dinucleotide. Biphasic kinetics of ssRNA substrates demonstrates that Mn2+ stabilizes alternative enzyme states that have faster substrate cleavage on the enzyme. However, we did not detect Mn2+-induced conformational changes using CD and fluorescence spectroscopy. The pH-rate profiles in the presence and absence of Mn2+ reveal active-site ionizable groups with similar pKas of ca. 4.8 to 5.2. An Rp stereoisomer phosphorothioate modification at the scissile phosphate had minimal effect on catalysis supporting a mechanism involving an anionic transition state. However, the Sp stereoisomer is inactive because of weak binding, consistent with models that position the nonbridging phosphoryl oxygen deep in the active site. Together, these data demonstrate that Nsp15 employs a conventional acid-base catalytic mechanism passing through an anionic transition state, and that divalent ion activation is substrate dependent.


Assuntos
Endonucleases , Íons , Clivagem do RNA , SARS-CoV-2 , Catálise , COVID-19/microbiologia , Endonucleases/genética , Endonucleases/metabolismo , Cinética , Metais/química , Clivagem do RNA/genética , SARS-CoV-2/enzimologia , Íons/metabolismo , Ativação Enzimática , Manganês/química , Concentração de Íons de Hidrogênio , Animais , Camundongos , Escherichia coli/genética
2.
J Am Chem Soc ; 145(5): 2830-2839, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36706353

RESUMO

Ribonucleases and small nucleolytic ribozymes are both able to catalyze RNA strand cleavage through 2'-O-transphosphorylation, provoking the question of whether protein and RNA enzymes facilitate mechanisms that pass through the same or distinct transition states. Here, we report the primary and secondary 18O kinetic isotope effects for hepatitis delta virus ribozyme catalysis that reveal a dissociative, metaphosphate-like transition state in stark contrast to the late, associative transition states observed for reactions catalyzed by specific base, Zn2+ ions, or ribonuclease A. This new information provides evidence for a discrete ribozyme active site design that modulates the RNA cleavage pathway to pass through an altered transition state.


Assuntos
RNA Catalítico , RNA Catalítico/química , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/metabolismo , RNA/química , Catálise , Domínio Catalítico , Conformação de Ácido Nucleico , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...